วันจันทร์ที่ 28 มิถุนายน พ.ศ. 2553

Filter applications

Figure 2 shows several different types of filter applications. In Fig.2A, the filter is placed between the antenna and the antenna input of a receiver. Its function is to remove unwanted signals before they reach the front end. Whether a high-pass, low-pass, or bandpass filter is used depends on the local situation (i.e., the frequencies that you wish to eliminate).



(A) ahead of a receiver antenna input to reduce unwanted signals,

There are several good reasons for using a filter ahead of a receiver, even when the strong local signal is not within the normal passband of the receiver. The narrow passband selectivity of the receiver is set in the IF amplifiers and the RF (“frontend”) selectivity is a lot broader. As a result, strong signals often reach the input stage, which will be either an RF amplifier or mixer. In either case, the unwanted signal can drive the input of the receiver into a nonlinear region of operating, creating either harmonics or intermodulation distortion products. These spurious signals not only are audible in the receiver (in some combinations), but also take up part of the receiver’s dynamic range.

Figure 2B shows a filter placed at the output of an oscillator circuit. If the output signal is a pure sine wave, it will contain only one frequency (i.e., the desired oscillation frequency). But if there is even a little distortion, then harmonics will be present. These harmonics will adversely affect some circuits that the oscillator drives, so they must be eliminated.



(B) at the output of oscillators and other waveform generators

The most usual filter used on oscillator outputs is the low-pass filter. The filter is designed with a cutoff frequency that is between the desired fundamental frequency and its second harmonic.

Another type of filter is a very high-Q bandpass filter. These filters are very narrow. The purpose of using such a filter is to reduce the phase noise on the oscillator signal. It takes a very narrow-band filter to do this trick, and both the oscillator frequency and the passband of the filter must be stable or the poly will be unsuccessful.

The circuit in Fig. 2C shows the use of two filters at the output of a double
balanced mixer (DBM). The DBM receives two input frequencies, F1 and F2, and will output a spectrum of mF1 +- nF2, where m and n are integers greater than 1 (on non-DBM mixers, m and n might be 1, indicating that F1, F2, or both may appear in the output). It is not sufficient to pick off the signal in the desired band and reject the signals in the unwanted band. Those unwanted signals will be reflected back into the mixer and might adversely affect its operation. The proper strategy is to use a circuit that passes the undesired signals to a dummy load that has a resistance equal to the mixer output impedance. This arrangement allows the dummy load to absorb the unwanted signals rather than permits them to reflect back into the mixer circuit.


(C) at the output of a double balanced mixer in a diplexer impedance-matching circuit.