วันจันทร์ที่ 28 มิถุนายน พ.ศ. 2553

Filter construction

A filter must be constructed properly if it is to work correctly. The two main factors to consider are layout and shielding.

Proper layout involves two main issues. First, keep the output and input ends of the circuit physically separated so as to prevent coupling of signal energy between them. Second, make sure that all inductors in the filter are shielded, arranged at right angles to each other, or wound on toroidal cores. All three of these approaches are used because they reduce coupling between inductors. Shielding keeps the magnetic field of the coil contained within the metallic shield. When cylindrical, solenoid-wound coils (i.e., those with a length greater than the diameter) are placed at right angles with respect to each other then magnetic coupling is minimized. A toroidal coil form is doughnut shaped and it naturally contains the magnetic field because of its geometry.

Shielding of the entire filter circuit is necessary to keep outside signal energy from getting into the filter and to ensure that the only signal reaching the load (i.e., the circuit being driven by the filter) has passed through the filter circuit. Figure 1 shows a sample filter (such as those covered in this chapter) enclosed within a shielded box. The signal input and output jacks. (J1 and J2) are coaxial connectors.

The box should be either a die-cast aluminum box with a tight-fitting lid (some brands are pretty sloppy, so be careful), a sheet-metal aluminum box with overlapping lips for a RF seal, or a box specifically intended for RF work (these can be identified by the RF “finger” gaskets around the edge of the cover).



1.Filter success often depends on layout and construction. Shielded enclosures are a must!